Simulation Approach of Cutting Tool Movement Using Artificial Intelligence Method
نویسندگان
چکیده
In recent years, the productivity of machine tools has been significantly improved by using computer-based CAD/CAM systems for Computer Numerical Control (CNC). Various types of CAM software in the market that provide tool path programming and can be applied for different types of the machining process such as drilling, milling, and turning. However, sometimes the default tool path generated in the CAD/CAM system is not the optimal tool path which produces longer distance and increase the machining time. In this paper, we present cutting tools movement by Genetic Algorithm (GA) and Ant Colony Optimization (ACO) method in generation of shortest tool path. For observation of the performance of both methods, comparisons with conventional method have been carried out. The shortest path of drilling tool path adapts Travelling Salesman Problem (TSP) in determining the distance during machining. The simulation result shows that ACO and GA based tool path optimization is useful to find a lower distance of tool path generation for holes drilling process.
منابع مشابه
Modelling and Numerical Simulation of Cutting Stress in End Milling of Titanium Alloy using Carbide Coated Tool
Based on the cutting force theory, the cutting stress in end milling operation was predicted satisfactorily through simulation of using finite element method. The mechanistic force models were introduced in high accuracy force predictions for most applications. The material properties in the simulations were defined based on the cutting force theory, as a function of strain and strain rate wher...
متن کاملSIMULATION AND MONITORING OF THE MACHINING PROCESS VIA FUZZY LOGIC AND CUTTING FORCES
On time replacement of a cutting tool with a new one is an important task in Flexible Manufacturing Systems (FMS). A fuzzy logic-based approach was used in the present study to predict and simulate the tool wear progress in turning operation. Cutting parameters and cutting forces were considered as the input and the wear rate was regarded as the output data in the fuzzy logic for construct...
متن کاملForecasting of heavy metals concentration in groundwater resources of Asadabad plain using artificial neural network approach
Nowadays 90% of the required water of Iran is secured with groundwater resources and forecasting of pollutants content in these resources is vital. Therefore, this research aimed to develop and employ the feedforward artificial neural network (ANN) to forecast the arsenic (As), lead (Pb), and zinc (Zn) concentration in groundwater resources of Asadabad plain. In this research, the ANN models we...
متن کاملPrediction of the spread of Corona-virus carrying droplets in a metro wagon - A computational based artificial intelligence approach
Assessing the risk of transmitting the corona virus is important for protecting public health under the COVID-19 epidemic. Public transportation such as bus and metro wagon, are the most important source of COVID 19 dispersion. In the last decade, numerical simulation plays important roles in predicting. In this case study, by a combination of numerical simulation and artificial intelligence, t...
متن کاملChip Formation Process using Finite Element Simulation “Influence of Cutting Speed Variation”
The main aim of this paper is to study the material removal phenomenon using the finite element method (FEM) analysis for orthogonal cutting, and the impact of cutting speed variation on the chip formation, stress and plastic deformation. We have explored different constitutive models describing the tool-workpiece interaction. The Johnson-Cook constitutive model with damage initiation and damag...
متن کامل